Deep Learning Foundations

Lecturer

Dr. Sandipan Sikdar
Junior Professorship

Course Content

  • Neural networks
  • Training and optimization
  • Deeper neural networks
    • Convolutional neural nets
    • Recurrent neural networks
    • Self-attention
  • Generative models
    • Latent variable models
    • Flow generative models
    • Variational Autoencoders
    • Generative adversarial networks (GAN)
    • Diffusion models
  • Learning paradigms
    • Self-supervised learning
    • Contrastive learning
    • Multi-task learning
    • Meta-learning
  • Adversarial Attacks and defenses

Learning Goal

Learn about deep neural network architectures and learning paradigms and learn to deploy them using PyTorch.

Teaching Assistants

  • Jonas Wallat
  • Tobias Kalmbach

Schedule and other information

Lecture: Wednesdays 08:00 - 09:30 Weekly (Raum 023: Multimedia-Hörsaal, Gebaeude 3703: Technische Informatik)

Exercise: Wednesdays 15:00 - 16:30 Weekly (Raum 010: MZ2, Gebaeude 3408: Mehrzweckgebäude)

ECTS: 5

Literature

Deep Learning, Ian Goodfellow, Yoshua Benjio and Aaron Courville